13,8 млрд лет спустя наука приблизилась к ответу: почему нас вообще не должно было быть

@newsinfo
Геометрия молекул

Геометрия молекул

© https://commons.wikimedia.org by WorldAI is licensed under Creative Commons Attribution 4.0 International

Понять, почему мы вообще существуем — один из самых интригующих вопросов науки. Ведь по всем законам физики, сразу после Большого взрыва материя и антиматерия должны были уничтожить друг друга, оставив лишь вспышку чистой энергии. Однако этого не случилось — вокруг нас звёзды, планеты и жизнь. Почему же материя оказалась "сильнее"?

Тайна выжившей материи

ЦЕРН, главный центр исследований элементарных частиц, напоминает: "частицы материи и антиматерии рождаются парами и при столкновении аннигилируют, высвобождая энергию". Но во Вселенной сохранилось нечто иное — баланс нарушился в пользу материи. Учёные десятилетиями ищут объяснение, и в центре этой головоломки оказалось нейтрино — призрачная частица, которую почти невозможно поймать.

Нейтрино не имеют электрического заряда, почти не имеют массы и практически не взаимодействуют с веществом. Каждую секунду сквозь человека проходят триллионы этих частиц, и лишь единицы из них оставляют след в детекторах. Тем не менее именно нейтрино могут хранить ключ к разгадке того, почему мы вообще есть.

Два эксперимента — одна цель

Чтобы приблизиться к ответу, два масштабных проекта — T2K в Японии и NOvA в США — объединили силы. Исследователи решили совместно проанализировать накопленные данные, чтобы увеличить точность наблюдений. Результаты были опубликованы в журнале Nature и стали примером международного сотрудничества в физике высоких энергий.

"Проводя совместный анализ, можно получить более точные результаты, чем каждый эксперимент в отдельности", — отметила сотрудник NOvA Людмила Колупаева.

Такое объединение данных — не просто обмен результатами, а возможность взглянуть на одну из самых фундаментальных загадок космоса под разными углами.

Упорядочение массы нейтрино

Ключевая идея исследования — "упорядочение массы нейтрино". Учёные знают, что существует три типа нейтрино: электронные, мюонные и тау. Каждое из них — смесь трёх массовых состояний, обозначаемых как ν₁, ν₂ и ν₃. Вопрос в том, как именно эти массы расположены между собой.

  1. Нормальное упорядочение - два лёгких состояния и одно тяжёлое.

  2. Инвертированное упорядочение - наоборот, два тяжёлых и одно лёгкое.

Эта структура важна, потому что от неё зависит, как нейтрино превращаются друг в друга — процесс, называемый осцилляцией. Например, мюонные нейтрино могут превращаться в электронные, а антинейтрино — вести себя иначе. Разница между поведением нейтрино и антинейтрино может объяснить, почему после Большого взрыва осталась материя, а не пустота энергии.

Сравнение

ПараметрНормальное упорядочениеИнвертированное упорядочение
Лёгкие состоянияν₁, ν₂ν₁, ν₃
Тяжёлое состояниеν₃ν₂
Вероятность превращения мюонных нейтриноВышеНиже
Нарушение CP-симметрииВозможноВыражено сильнее
Потенциальная связь с происхождением материиУмереннаяЗначительная

Советы шаг за шагом

Что делали учёныеИнструменты и проекты
Собрали данные двух установокT2K (Япония), NOvA (США)
Согласовали алгоритмы обработкиСистема анализа нейтринных осцилляций
Сравнили результаты для нейтрино и антинейтриноДетекторы с жидким сцинтиллятором
Определили границы возможных моделей массМатематические модели CP-нарушения
Опубликовали результаты и предложили новые методыЖурнал Nature, международная группа экспертов

Ошибка → Последствие → Альтернатива

  • Ошибка → Считать, что нейтрино не влияют на существование материи.

    Последствие → Потеря ключа к разгадке асимметрии Вселенной.

    Альтернатива → Изучение нейтринных осцилляций через детекторы глубокого подземного типа, например IceCube или DUNE.
  • Ошибка → Игнорировать совместные исследования разных лабораторий.

    Последствие → Недостаточная точность и ограниченные выводы.

    Альтернатива → Кооперация между международными проектами, как T2K и NOvA.
  • Ошибка → Рассматривать нейтрино только с точки зрения астрофизики.

    Последствие → Пропуск связи с квантовой симметрией и антиматерией.

    Альтернатива → Объединение подходов ядерной физики и космологии.

А что если…

Что, если окажется, что инвертированная модель действительно верна? Тогда это станет одним из самых значимых открытий XXI века — объяснением, почему после аннигиляции остался "избыток" материи. А если нейтрино окажутся мажорановскими частицами (то есть своими же антипартнёрами), это может полностью изменить наши представления о происхождении массы.

Плюсы и минусы

Плюсы экспериментовМинусы и трудности
Объединение данных повышает точностьСложность калибровки между установками
Возможность проверки разных гипотезВысокая стоимость и длительность исследований
Расширение знаний о структуре материиНеоднозначность результатов при малых статистиках
Создание новых технологий детектированияОграниченная чувствительность к редким событиям

FAQ

Как ученые ловят нейтрино?

С помощью гигантских детекторов, заполненных водой или жидким сцинтиллятором, установленных глубоко под землёй — чтобы защитить их от других частиц.

Сколько стоят такие эксперименты?

Бюджеты T2K и NOvA составляют сотни миллионов долларов, но эти проекты рассчитаны на десятилетия работы.

Что лучше для наблюдения — нейтрино или антинейтрино?

Нейтрино легче детектировать, но антинейтрино важнее для понимания различий между материей и антиматерией.

Мифы и правда

Миф: нейтрино не имеют массы.

Правда: масса есть, пусть и крошечная — именно это позволяет им осциллировать.

Миф: эти частицы не влияют на космос.

Правда: они играют ключевую роль в эволюции звёзд и Вселенной.

Миф: их можно наблюдать только в космосе.

Правда: детекторы на Земле ежедневно фиксируют тысячи нейтринных событий.

3 интересных факта

• Через каждый квадратный сантиметр Земли ежесекундно проходят миллиарды нейтрино.

• Некоторые из них приходят прямо из Солнца или сверхновых.

• Чтобы поймать одно нейтрино, иногда требуется несколько лет наблюдений.

Исторический контекст

Впервые нейтрино были предложены Вольфгангом Паули в 1930 году, чтобы объяснить "недостающую" энергию при радиоактивном распаде. В 1956-м их удалось зафиксировать экспериментально, а к концу XX века учёные доказали, что нейтрино способны менять тип — осциллировать. Это открытие стало одним из крупнейших в физике и было отмечено Нобелевской премией.

Данные о правообладателе фото и видеоматериалов взяты с сайта «NewsInfo», подробнее в Условиях использования