Команда ПИШ СПбПУ получила патент на запальное устройство для реакторов нефтегазоперерабатывающих установок

Команда Научно-образовательного центра «Цифровой инжиниринг основного оборудования химико-технологических систем» Передовой инженерной школы Санкт-Петербургского политехнического университета Петра Великого «Цифровой инжиниринг» успешно завершила разработку и получила патент на запальное устройство для реакторов нефтегазоперерабатывающих установок.

Патент на изобретение RU 2842893 C1 был зарегистрирован Федеральной службой по интеллектуальной собственности 3 июля 2025 года.

Патент на запальное устройство для реакторов нефтегазоперерабатывающих установок Патент на запальное устройство для реакторов нефтегазоперерабатывающих установок

Ведущие отраслевые научные центры и стратегические индустриальные партнеры СПбПУ проявили значительный интерес к разработке. Партнёрами изобретения выступили АО «ЦКБМ» (входит в Госкорпорацию «Росатом»), ООО «НТЦ «Газконсалтинг», Федеральный исследовательский центр химической физики им. Н. Н. Семенова РАН.

Среди конечных интересантов инновационного устройства — АО «НИИ НПО «ЛУЧ» (входит в Госкорпорацию «Росатом»).

Разработчики запального устройства для реакторов нефтегазоперерабатывающих установок:

  • Боровков Алексей Иванович, главный конструктор по ключевому научно-технологическому направлению развития СПбПУ «Системный цифровой инжиниринг», директор Передовой инженерной школы СПбПУ «Цифровой инжиниринг»;
  • Рождественский Олег Игоревич, руководитель Офиса технологического лидерства СПбПУ;
  • Аристович Юрий Валерьевич, эксперт НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ;
  • Оганесян Грач Варужанович, главный специалист и научный сотрудник НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ;
  • Михеева Валерия Юрьевна, инженер НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ;
  • Николаева Валерия Андреевна, инженер НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ;
  • Иванов Владислав Сергеевич, заместитель директора Федерального исследовательского центра химической физики им. Н. Н. Семенова РАН по научной работе;
  • Фролов Сергей Михайлович, заведующий отделом горения и взрыва и заведующий лабораторией детонации Федерального исследовательского центра химической физики им. Н. Н. Семенова РАН;
  • Васильев Николай Дмитриевич, главный конструктор по дистанционно управляемому и транспортно-технологическому оборудованию АО «ЦКБМ»;
  • Маринченко Никита Александрович, руководитель проектного офиса по судостроению и водородной энергетике АО «ЦКБМ»;
  • Бондарчук Дмитрий Витальевич, коммерческий директор ООО «НТЦ «Газконсалтинг».
Критически важной производственной проблемой является обеспечение надёжного розжига горелочных устройств сложного технологического оборудования, например, реактора автотермического риформинга, в процессе его пуска. Неудачный розжиг может привести к образованию взрывоопасных концентраций горючей смеси в последующих элементах технологической цепочки. Это, в свою очередь, может спровоцировать неконтролируемые экзотермические реакции и, как следствие, аварийные ситуации с потенциальным ущербом для оборудования и персонала. Разработанное изделие обеспечивает кардинальное решение проблемы, гарантируя стабильный и надёжный розжиг

, — рассказал ответственный исполнитель разработки, эксперт НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ Юрий Аристович.

Эксперт НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ Юрий Аристович Эксперт НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ Юрий Аристович

Запальное устройство представляет собой конструктивно и функционально единое устройство — сложную техническую систему, в которой все компоненты связаны друг с другом, и совместно реализуют функцию зажигания горючей смеси. Устройство содержит корпус, патрубок подачи окислителя и патрубок подачи горючего газа, свечу зажигания, клапаны патрубка подачи окислителя и патрубка подачи горючего газа, выходной патрубок. Корпус содержит цилиндрическую камеру смешивания, входы патрубка подачи окислителя и патрубка подачи горючего газа расположены в наиболее удаленной от выходного патрубка части камеры смешивания.

Патрубок подачи окислителя присоединен к корпусу так, чтобы подавать окислитель в тангенциальном направлении, а патрубок подачи горючего газа — так, чтобы подавать горючий газ в радиальном направлении. Входные отверстия патрубков в корпусе выполнены так, чтобы обеспечивалось критическое истечение газов. Размеры входных отверстий обосновано подобраны таким образом, чтобы при изменении противодавления расходы горючего газа и окислителя менялись пропорционально, диаметр выходного патрубка составляет от 10 до 50 % от диаметра камеры смешивания. Технический результат — повышение надёжности работы устройства.

3D-модель запального устройства со шкафами управления подачей рабочих сред3D-модель запального устройства со шкафами управления подачей рабочих сред

Запальное устройство сконструировано для работы в короткоимпульсном режиме. Это позволяет обеспечить надёжный поджиг при малых тепловых нагрузках в широком диапазоне давлений (от 1 до нескольких десятков атмосфер). Устройство формирует и направляет небольшие объемы пламени — огненные эллипсы определенного размера и с заданной скоростью. Запальные заряды обеспечивают надежное воспламенение основной горелки, минимизируя тепловую нагрузку на зону истечения и корпус запального устройства, что значительно упрощает конструкцию реактора и процедуру его запуска.

Задача разработки запального устройства в рамках установленных сроков представлялась крайне сложной. Изначально предполагалась реализация системы с развитой инфраструктурой охлаждения и многокомпонентной теплозащитой, что обусловлено экстремально высокими температурами эксплуатации, значительно превышающими параметры штатных устройств. Специфика реактора исключала возможность применения серийных решений. Рассматривались альтернативные варианты, в том числе с использованием пиротехнических патронов, однако такой подход был признан неоптимальным с точки зрения технологичности и эксплуатационной безопасности. В результате было создано оригинальное, надёжное и безопасное запальное устройство, удовлетворяющее всем предъявляемым требованиям. Разработанное устройство демонстрирует высокий потенциал применения не только в рамках данного проекта, но и в других отраслях промышленности, где требуются надёжные системы инициирования процессов в условиях высоких температур и агрессивных сред

, — дополнил главный конструктор по дистанционно управляемому и транспортно-технологическому оборудованию АО «ЦКБМ» Николай Васильев.

Главный конструктор по ключевому научно-технологическому направлению развития СПбПУ «Системный цифровой инжиниринг», директор Передовой инженерной школы СПбПУ «Цифровой инжиниринг» Алексей Боровковрассказал о ключевом факторе успеха: "В начале работы ни один из авторов разработки не мог предвидеть окончательный результат создания наукоёмкого и высокотехнологичного изделия. Объединив знания, опыт и компетенции ученых, инженеров и конструкторов из различных областей знаний и отраслей, нам удалось сформировать уникальную мультидисциплинарную команду и получить впечатляющие результаты. Конечно, это закономерный итог применения технологий системного цифрового инжиниринга, включающих технологию разработки цифровых двойников, математическое и компьютерное моделирование нестационарных нелинейных физико-механических и физико-химических процессов поведения высокотехнологичного изделия.

Разработка сложной технической системы основана на эффективном применении созданной мультидисциплинарной цифровой модели[ 1, 2, 3 ], представляющей систему взаимоувязанных математических и компьютерных моделей, описывающих кинетику горения, химическую термодинамику свободнорадикальных реакций, динамику вихревых течений при сверхкритических параметрах веществ и нестационарную нелинейную термомеханику. Многочисленные цифровые (виртуальные) испытания и необходимые натурные испытания позволили провести верификацию[ 1, 2 ]и валидацию [1, 2]разработанных моделей, повысить уровень адекватности моделей и описания сложных процессов, подтвердили эффективность и надежность разработанного высокотехнологичного изделия.

С помощью подходов, технологий и методов системного цифрового инжиниринга, сформированного инновационного научно-технического задела и на основе цифровой платформы для разработки и применения цифровых двойников CML-Bench® [ 1, 2 ]наша команда в рекордно короткие сроки реализовала все стадии создания готового промышленного изделия: разработка и конструирование заняла всего 2 месяца, изготовление и испытания — 3 месяца. Принципиально важно отметить, что традиционные подходы не способны обеспечить столь высокую скорость реализации наукоёмких и высокотехнологичных проектов по разработке сложных технических систем«.

Главный конструктор по ключевому научно-технологическому направлению развития СПбПУ «Системный цифровой инжиниринг», директор Передовой инженерной школы СПбПУ «Цифровой инжиниринг» Алексей Боровков Главный конструктор по ключевому научно-технологическому направлению развития СПбПУ «Системный цифровой инжиниринг», директор Передовой инженерной школы СПбПУ «Цифровой инжиниринг» Алексей Боровков

В заключение отметим, что результаты разработки запального устройства внесли значительный вклад в формирование научно-технологического задела для создания цифрового (виртуального) испытательного полигона для горелочных устройств. Разработка цифрового испытательного полигона выступает одной из важнейших конечных целей масштабного проекта по разработке горелочных устройств нового поколения для печей пиролиза, реализуемого в рамках ключевого научно-технологического направления (КНТН-1) развития СПбПУ «Системный цифровой инжиниринг» в рамках программы «Приоритет-2030».

Проект в рамках КНТН-1 предусматривает определение подходов к математическому и компьютерному моделированию новых горелочных устройств, разработку матрицытребований, целевых показателей и ресурсных ограничений, создание серии компьютерных моделей прототипа (первичная, уточнённая, детализированная, оптимизированная), проведение натурных испытаний опытно-промышленного образца горелочного устройства для валидации компьютерной модели, разработку конструкторской документации и внедрение в производство.

Напомним, что в июне 2025 года специалисты НОЦ «Цифровой инжиниринг основного оборудования химико-технологических систем» ПИШ СПбПУ представили этот проект и компетенции Центра в разработке горелочных устройств на площадке «Газпром нефти» — одного из лидеров нефтегазовой отрасли и нефтехимической промышленности России.

Методическую поддержку и процесс регистрации права на объект интеллектуальной собственности запального устройства оказывал Центр трансфера и импортозамещения передовых цифровых и производственных технологий СПбПУ.

Данные о правообладателе фото и видеоматериалов взяты с сайта «Санкт-Петербургский политех Петра Великого», подробнее в Условиях использования
Анализ
×
Алексей Иванович Боровков
Последняя должность: Проректор по цифровой трансформации (ФГАОУ ВО СПБПУ,СПБПУ,ФГАОУ ВО "СПБПУ", САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО)
1
Семенов Н. Н.
Рождественский Олег Игоревич
Оганесян Грач Варужанович
Госкорпорация "Росатом"
Сфера деятельности:Производство и распределение электроэнергии, газа и воды
497
ПАО "ГАЗПРОМ НЕФТЬ"
Сфера деятельности:Добыча полезных ископаемых
145
АО "ЦКБМ"
Организации
1